Browse Prior Art Database

Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations (RFC3135)

IP.com Disclosure Number: IPCOM000005319D
Original Publication Date: 2001-Jun-01
Included in the Prior Art Database: 2001-Aug-21

Publishing Venue

Internet Society Requests For Comment (RFCs)

Related People

J. Border: AUTHOR [+5]

Abstract

This document is a survey of Performance Enhancing Proxies (PEPs) often employed to improve degraded TCP performance caused by characteristics of specific link environments, for example, in satellite, wireless WAN, and wireless LAN environments. Different types of Performance Enhancing Proxies are described as well as the mechanisms used to improve performance. Emphasis is put on proxies operating with TCP. In addition, motivations for their development and use are described along with some of the consequences of using them, especially in the context of the Internet.

This text was extracted from a ASCII document.
This is the abbreviated version, containing approximately 3% of the total text.

Network Working Group J. Border Request for Comments: 3135 Hughes Network Systems Category: Informational M. Kojo University of Helsinki

J. Griner NASA Glenn Research Center

G. Montenegro Sun Microsystems, Inc.

Z. Shelby University of Oulu

June 2001

Performance Enhancing Proxies Intended to Mitigate Link-Related

Degradations

Status of this Memo

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

This document is a survey of Performance Enhancing Proxies (PEPs) often employed to improve degraded TCP performance caused by characteristics of specific link environments, for example, in satellite, wireless WAN, and wireless LAN environments. Different types of Performance Enhancing Proxies are described as well as the mechanisms used to improve performance. Emphasis is put on proxies operating with TCP. In addition, motivations for their development and use are described along with some of the consequences of using them, especially in the context of the Internet.

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Types of Performance Enhancing Proxies . . . . . . . . . . . . 4 2.1 Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Transport Layer PEPs . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Application Layer PEPs . . . . . . . . . . . . . . . . . . . 5 2.2 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Implementation Symmetry . . . . . . . . . . . . . . . . . . . 6 2.4 Split Connections . . . . . . . . . . . . . . . . . . . . . . 7

Border, et al. Informational [Page 1]

RFC 3135 PILC Performance Enhancing Proxies June 2001

2.5 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . 8 3. PEP Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 TCP ACK Handling . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 TCP ACK Spacing . . . . . . . . . . . . . . . . . . . . . . 9 3.1.2 Local TCP Acknowledgements . . . . . . . . . . . . . . . . . 9 3.1.3 Local TCP Retransmissions . . . . . . . . . . . . . . . . . 9 3.1.4 TCP ACK Filtering and Reconstruction . . . . . . . . . . . . 10 3.2 Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Compression . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 Handling Periods of Link Disconnection with TCP . . . . . . . 11 3.5 Priority-based Multiplexing . . . . . . . . . . . . . . . . . 12 3.6 Protocol Booster Mechanisms . . . . . . . . . . . . . . . . . 13 4. Implications of Using PEPs . . . . . . . . . . . . . . . . . . 14 4.1 The End-to-end Argument . . . . . . . . . . . . . . . . . . . 14 4.1.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4....