Browse Prior Art Database

Multi-Gbit/s module for memory and processor products and method for improving the data transfer rate

IP.com Disclosure Number: IPCOM000017934D
Original Publication Date: 2001-Oct-01
Included in the Prior Art Database: 2003-Jul-23
Document File: 6 page(s) / 228K

Publishing Venue

Siemens

Related People

Dr. Kamel Ayadi: AUTHOR

Abstract

The speed of electronic device is one of the con- cerned issues in microelectronic. Research and de- velopment are directed toward down scale of MOS transistor. Sub-micron technology has offered high- speed transistor. A 1GHz silicon chip is being manu- factured, but module of many silicon chips and dis- crete components is still operate at lower frequency than the silicon chip itself. This is mainly due to metal traces that are not able to hold an electronic high-speed signal. The bottleneck that the actual module is facing is how a signal of 1GHz that is de- livered by the silicon chip can be maintained on the bus of the module. In contrast to that and in other areas, it was demonstrated that laser light has solved some major problems that the pure electronic module is facing. The mixture of laser optic and electronic devices is widely used in Ethernet and has proved its capability in high-speed data transfer. A challenge of many Gb/s transfer rate is commercially available in telecommunication. In memory and processor pro- duction, the introduction of laser light for data trans- fer can make possible the development of a complete optoelectronic module with a speed above 1GHz. The solution detailed in this description is the way that the module should be made to respond to the equipment. Low cost and reliable package are the most con- cerned issues in optoelectronic module. Module equipped with waveguides and laser sources has a capability to easily transfer data at the speed of laser source. Laser source made in other material than silicon is general one to 10 orders of magnitude higher in speed than that of silicon. 1GHz photore- ceiver in standard CMOS technology is possible to convert light pulses to electronic pulses, it was re- cently demonstrated in [Woodwards99]. Waveguide can be built in different materials such as plastic, polymer and glass. The real cost in packaging is the geometric way that light should be guided.

This text was extracted from an ASCII text file.
This is the abbreviated version, containing approximately 14% of the total text.

Multi-Gbit/s module for memoryand processor products and me-thod for improving the data trans-fer rate

Information / Kommunikation

Idee: Dr. Kamel Ayadi, München

The� speed� of� electronic� device� is� one� of� the� con-cerned� issues� in� microelectronic.� Research� and� de-velopment are directed toward down scale of MOStransistor. Sub-micron technology has offered high-speed transistor. A 1GHz silicon chip is being manu-factured, but module of many silicon chips and dis-crete components is still operate at lower frequencythan� the� silicon� chip� itself.� This� is� mainly� due� tometal traces that are not able to hold an electronichigh-speed� signal.� The� bottleneck that the actualmodule is facing is how a signal of 1GHz that is de-livered by the silicon chip can be maintained on thebus of the module. In contrast to that and in otherareas, it was demonstrated that laser light has solvedsome major problems that the pure electronic moduleis facing. The mixture of laser optic and electronicdevices is widely used in Ethernet and has proved itscapability in high-speed data transfer. A challenge ofmany Gb/s transfer rate is commercially available intelecommunication.� In� memory� and� processor� pro-duction, the introduction of laser light for data trans-fer can make possible the development of a completeoptoelectronic module with a speed above 1GHz. Thesolution detailed in this description is the way that themodule should be made to respond to the equipment.

Low cost� and� reliable� package� are� the� most� con-cerned� issues� in� optoelectronic module. Moduleequipped� with� waveguides� and� laser� sources has acapability to easily transfer data at the speed of lasersource.� Laser� source� made� in� other� material� thansilicon� is� general� one� to 10 orders of magnitudehigher in speed than that of silicon. 1GHz photore-ceiver in standard CMOS technology is possible toconvert light pulses to electronic pulses, it was re-cently demonstrated in [Woodwards99]. Waveguidecan� be� built� in� different� materials such as plastic,polymer and glass. The real cost in packaging is thegeometric way that light should be guided.

Up to now the module was not changed in principle.The quality of the dielectric that is built between thelayers of the module was ameliorated so that couplingcapacitance is minimized. Also, the bus wires of themodule are terminated to a reference voltage, so thatthe swing voltage of the signal is kept low and theoperating frequency is therefore increased. In addi-tion to that, the electronic data is travelling at bothedges� of� the� clock.� A� challenge� of 800MHz datatransfer rate is being designed in the module, but itseems to be closed to the upper frequency limit.

Laser source con provide pulses at 10 to 100GHz,which means optical data of 10 to 100Gbit/s is possi-ble. Electronic data coming from the silicon chip (e.g.DRAM, processor) to the module bus at the speed ofe.g. 1GHz can be converted to light and delivered tothe silico...