InnovationQ will be updated on Sunday, Oct. 22, from 10am ET - noon. You may experience brief service interruptions during that time.
Browse Prior Art Database

Dynamically increase host-capacity by reducing host margins using Work-load co-relation based on utilization data

IP.com Disclosure Number: IPCOM000235870D
Publication Date: 2014-Mar-28
Document File: 7 page(s) / 184K

Publishing Venue

The IP.com Prior Art Database


There are various ways to achieve workload consolidation while providing IaaS to the customers of cloud computing. Providing stable plans for workload consolidation involves optimal usage of resources. Historical usage data of workloads give a pattern of workload behavior that can be used to predict the future behavior of a workload. This submission provides a mechanism to do workload consolidation using the historical data with the help of traditional bin packing algorithm. Host margin depicts the scale that can be considered reserved on the physical machine during workload consolidation. Further, in this submission, we explore a way of decreasing these host margins - as we produce placement plans that consider complimentary nature of workloads. The experiments showed that a greater hardware usage could be achieved by decreasing the host margin if we follow the workload co-relation.

This text was extracted from a PDF file.
This is the abbreviated version, containing approximately 25% of the total text.

Page 01 of 7

Dynamically increase host-capacity by reducing host margins using Work -load co-relation based on utilization data

A data center comprises of several physical servers and these servers can then be logically  segregated based on data center preferences to host workloads. The cloud user is unaware of the  hardware hosting a given workload, since the data center takes care of resource allocation for the  hardware by provisioning a Virtual Machine on one of the underlying servers. The data center is  also responsible for doing load balancing to ensure that none of the servers are loaded upto  capacity. This leads to finding out an optimal margin per physical server for different type of  resources including the CPU, Storage and Network needs. The margin for a given host can be  defined as the percentage range of the total capacity of the server that should not be allotted to a  Virtual Machine in order to account for variance in demands of individual workloads hosted on  that server. If the margin is not chosen carefully then the Physical server may fail in hosting the  workloads appropriately with the best throughput. In more generic terms, the data center would  want to avoid any Predictive Failure Alerts on the hardware using a very safe margin.

We would try to dynamically assign capacity margins for physical servers to ensure maximum  utilization viz fulfilling more workload demands as well as choose the right number to not throw  the server in to failures. This is done by using workload co­relation, which is aimed at reducing  relocation costs as well. In this article we describe the following:

1. Apparatus to perform dynamic workload co­relation to get a stable placement plan that reduces  the cost of relocation using heuristics. 

2. Use the co­relation data to decrease the host margin dynamically to fulfill more workload  demands and hence increasing greater hardware usage.

With the expansion of cloud and relocation costs involved with the movement of workloads  across different physical servers, it becomes necessary to produce more stable placement plans,  reducing the delta between placement plans. Generally workloads have patterns of usage. These  usage directly affect the resource demands of the Virtual Machine they are hosted on and in turn  affects the Physical Servers. Workloads can have complimentary behavior as well, and hence if  put together, can subsequently compliment each other on resource demands. For example,  Workload1 - may host applications that are accessed between 8 AM to 6PM and similarly  Workload2 might have peaking r...