Browse Prior Art Database

The MD5 Message-Digest Algorithm (RFC1321)

IP.com Disclosure Number: IPCOM000002143D
Original Publication Date: 1992-Apr-01
Included in the Prior Art Database: 2019-Feb-10
Document File: 21 page(s) / 24K

Publishing Venue

Internet Society Requests For Comment (RFCs)

Related People

R. Rivest: AUTHOR

Related Documents

10.17487/RFC1321: DOI

Abstract

This document describes the MD5 message-digest algorithm. The algorithm takes as input a message of arbitrary length and produces as output a 128-bit "fingerprint" or "message digest" of the input. This memo provides information for the Internet community. It does not specify an Internet standard.

This text was extracted from a PDF file.
This is the abbreviated version, containing approximately 11% of the total text.

Network Working Group R. Rivest Request for Comments: 1321 MIT Laboratory for Computer Science and RSA Data Security, Inc. April 1992

The MD5 Message-Digest Algorithm

Status of this Memo

This memo provides information for the Internet community. It does not specify an Internet standard. Distribution of this memo is unlimited.

Acknowlegements

We would like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle, David Chaum, and Noam Nisan for numerous helpful comments and suggestions.

Table of Contents

1. Executive Summary 1 2. Terminology and Notation 2 3. MD5 Algorithm Description 3 4. Summary 6 5. Differences Between MD4 and MD5 6 References 7 APPENDIX A - Reference Implementation 7 Security Considerations 21 Author’s Address 21

1. Executive Summary

This document describes the MD5 message-digest algorithm. The algorithm takes as input a message of arbitrary length and produces as output a 128-bit "fingerprint" or "message digest" of the input. It is conjectured that it is computationally infeasible to produce two messages having the same message digest, or to produce any message having a given prespecified target message digest. The MD5 algorithm is intended for digital signature applications, where a large file must be "compressed" in a secure manner before being encrypted with a private (secret) key under a public-key cryptosystem such as RSA.

Rivest [Page 1]

RFC 1321 MD5 Message-Digest Algorithm April 1992

The MD5 algorithm is designed to be quite fast on 32-bit machines. In addition, the MD5 algorithm does not require any large substitution tables; the algorithm can be coded quite compactly.

The MD5 algorithm is an extension of the MD4 message-digest algorithm 1,2]. MD5 is slightly slower than MD4, but is more "conservative" in design. MD5 was designed because it was felt that MD4 was perhaps being adopted for use more quickly than justified by the existing critical review; because MD4 was designed to be exceptionally fast, it is "at the edge" in terms of risking successful cryptanalytic attack. MD5 backs off a bit, giving up a little in speed for a much greater likelihood of ultimate security. It incorporates some suggestions made by various reviewers, and contains additional optimizations. The MD5 algorithm is being placed in the public domain for review and possible adoption as a standard.

For OSI-based applications, MD5’s object identifier is

md5 OBJECT IDENTIFIER ::= iso(1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 5}

In the X.509 type AlgorithmIdentifier [3], the parameters for MD5 should have type NULL.

2. Terminology and Notation

In this document a "word" is a 32-bit quantity and a "byte" is an eight-bit quantity. A sequence of bits can be interpreted in a natural manner as a sequence of bytes, where each consecutive group of eight bits is interpreted as a byte with the high-order (most significant) bit of each byte listed first. Similarly, a sequence of bytes can be interpreted as a sequence of 32-bit words, where...

Processing...
Loading...