Browse Prior Art Database

Long Thin Networks (RFC2757)

IP.com Disclosure Number: IPCOM000003354D
Original Publication Date: 2000-Jan-01
Included in the Prior Art Database: 2019-Feb-10
Document File: 46 page(s) / 71K

Publishing Venue

Internet Society Requests For Comment (RFCs)

Related People

G. Montenegro: AUTHOR [+4]

Related Documents

10.17487/RFC2757: DOI

Abstract

Our goal is to identify a TCP that works for all users, including users of long thin networks. This memo provides information for the Internet community.

This text was extracted from a PDF file.
This is the abbreviated version, containing approximately 4% of the total text.

Network Working Group G. Montenegro Request for Comments: 2757 Sun Microsystems, Inc. Category: Informational S. Dawkins Nortel Networks M. Kojo University of Helsinki V. Magret Alcatel N. Vaidya Texas A&M University January 2000

Long Thin Networks

Status of this Memo

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

In view of the unpredictable and problematic nature of long thin networks (for example, wireless WANs), arriving at an optimized transport is a daunting task. We have reviewed the existing proposals along with future research items. Based on this overview, we also recommend mechanisms for implementation in long thin networks.

Our goal is to identify a TCP that works for all users, including users of long thin networks. We started from the working recommendations of the IETF TCP Over Satellite Links (tcpsat) working group with this end in mind.

We recognize that not every tcpsat recommendation will be required for long thin networks as well, and work toward a set of TCP recommendations that are ’benign’ in environments that do not require them.

Montenegro, et al. Informational [Page 1]

RFC 2757 Long Thin Networks January 2000

Table of Contents

1 Introduction ................................................. 3 1.1 Network Architecture .................................... 5 1.2 Assumptions about the Radio Link ........................ 6 2 Should it be IP or Not? ..................................... 7 2.1 Underlying Network Error Characteristics ................ 7 2.2 Non-IP Alternatives ..................................... 8 2.2.1 WAP ................................................ 8 2.2.2 Deploying Non-IP Alternatives ...................... 9 2.3 IP-based Considerations ................................. 9 2.3.1 Choosing the MTU [Stevens94, RFC1144] .............. 9 2.3.2 Path MTU Discovery [RFC1191] ....................... 10 2.3.3 Non-TCP Proposals .................................. 10 3 The Case for TCP ............................................. 11 4 Candidate Optimizations ...................................... 12 4.1 TCP: Current Mechanisms ................................. 12 4.1.1 Slow Start and Congestion Avoidance ................ 12 4.1.2 Fast Retransmit and Fast Recovery .................. 12 4.2 Connection Setup with T/TCP [RFC1397, RFC1644] .......... 14 4.3 Slow Start Proposals .................................... 14 4.3.1 Larger Initial Window .............................. 14 4.3.2 Growing the Window during Slow Start ............... 15 4.3.2.1 ACK Counting .................................. 15 4.3.2.2 ACK-every-segment ............................. 16 4.3.3 Terminating Slow Start ............................. 17 4.3.4 Generating ACKs during Slow Start .................. 17 4.4 ACK Spacing ...................................

Processing...
Loading...