Browse Prior Art Database

Multi-Gbit/s module for memory and processor products and method for improving the data transfer rate

IP.com Disclosure Number: IPCOM000017934D
Original Publication Date: 2001-Oct-01
Included in the Prior Art Database: 2003-Jul-23

Publishing Venue

Siemens

Related People

Authors:
Dr. Kamel Ayadi [+details]

Abstract

The speed of electronic device is one of the con- cerned issues in microelectronic. Research and de- velopment are directed toward down scale of MOS transistor. Sub-micron technology has offered high- speed transistor. A 1GHz silicon chip is being manu- factured, but module of many silicon chips and dis- crete components is still operate at lower frequency than the silicon chip itself. This is mainly due to metal traces that are not able to hold an electronic high-speed signal. The bottleneck that the actual module is facing is how a signal of 1GHz that is de- livered by the silicon chip can be maintained on the bus of the module. In contrast to that and in other areas, it was demonstrated that laser light has solved some major problems that the pure electronic module is facing. The mixture of laser optic and electronic devices is widely used in Ethernet and has proved its capability in high-speed data transfer. A challenge of many Gb/s transfer rate is commercially available in telecommunication. In memory and processor pro- duction, the introduction of laser light for data trans- fer can make possible the development of a complete optoelectronic module with a speed above 1GHz. The solution detailed in this description is the way that the module should be made to respond to the equipment. Low cost and reliable package are the most con- cerned issues in optoelectronic module. Module equipped with waveguides and laser sources has a capability to easily transfer data at the speed of laser source. Laser source made in other material than silicon is general one to 10 orders of magnitude higher in speed than that of silicon. 1GHz photore- ceiver in standard CMOS technology is possible to convert light pulses to electronic pulses, it was re- cently demonstrated in [Woodwards99]. Waveguide can be built in different materials such as plastic, polymer and glass. The real cost in packaging is the geometric way that light should be guided.